

SUCCESS STORY 2022/1

IP PROTECTION USING SELF-MODIFING CODE
PREVENTING PRODUCT PIRACY THROUGH SOTWARE-HARDWARE BINDING

–
Industrial-scale reverse engineering is a serious
problem, with estimated annual losses for industry at
6.4 billion euros in Germany alone1. Typically, the
main effort needed to steal the intellectual property
(IP) of companies that make sophisticated products
with software components, resides in replicating the
hardware. Instead, software can often be copied
verbatim with no reverse engineering required.

In DEPS we investigate new approaches to prevent
the described IP theft. A key development in this
sense is the idea of binding (or gluing) programs to
hardware, so that they only execute correctly in the
target machine. In this way, if a protected program
runs on a machine other than the intended one, then
it will behave differently.

1www.vdma.org/documents/34570/51629660/VDMA+Study+Produc
t+Piracy+2022_final.pdf

To achieve this vision in a way that makes reverse
engineering of the protection a daunting, almost
impossible task, we have developed a sophisticated
approach based on physically unclonable functions
(PUFs) and self-modifying code.

PUFs are hardware-based security primitives which
cannot be cloned, since they depend on minor,
unavoidable variations in the manufacturing process
of hardware components. In turn, self-modifying code
are reflective algorithms that can change their
behavior at run-time. Putting both together, we can
make a program behave correctly only in the target
hardware. The key to prevent reverse engineering of
the correct code is to only instrument the correct
behavior at run-time and protected by PUFs.

DEPS - https://deps.scch.at
Dependable Production
Environments with Software
Security

Host: SCCH, www.scch.at

Programme: COMET – Competence
Centers for Excellent Technologies

Programme line: COMET-Module

Type of project: Strategic research

SUCCESS STORY 2022/1

Contact:
Thomas Ziebermayr, DEPS Coordinator, SCCH, T +43 50 343 890, thomas.ziebermayr@scch.at

Research Question

Can our envisioned copy-protection mechanism
be such that:

• Efficient and secure protection is provided to

a wide class of industrial software.
• Programs only execute correctly on their

target hardware.
• Programs still run on other machines but

behave differently and in ways that are less
obvious to detect.

• Hardware-software binding is based on any
commercially available PUF.

• Reverse engineering of the protection is
unfeasible and uneconomical.

• Critical properties, in particular operation
safety, are preserved in the protected
software irrespective of where it is executed.

DEPS Scientific Answers

We have developed a theory of reflective algorithms
[1] which enables us to formally specify the required
behavior of self-modifying code, step-by-step and at
any required level of abstraction via Abstract Sate
Machines (ASMs). This is complemented by a logic
which unlocks reasoning about reflective code and
formal proof of properties such as safety.

Using reflective ASMs we have modelled and precisely
specified in [2] a universal approach for hardware-
software binding, by means of which security, in
particular copy protection, can be supported in a
proper and consistent way.

A refinement of the model in [2] resulted in a practical
approach to copy-protection that works seamlessly
with a wide class of control state algorithms and
satisfies the requirements in our research question
[3]. In this approach, the different phase changes (or
equivalently state changes) are governed by PUF
responses, and only correct in the target machine (see
the schema). Unintended behavior preserves critical
properties (e.g., safety) thanks to a clever use of
symbolic execution.

Company partner Symflower was key in achieving this
vision. We were able to efficiently define safe states
using their symbolic execution technology.

In parallel, we have achieved a milestone with regards
to grammar inference and model-based fuzzing [4]
(recognized by a best paper award at MEDI 2022). We
now have the tools needed to automate the process
of determining program phases (states) as required
by our protection approach [3]. This will be achieved
by fuzzing-based analysis of program execution paths.

Related DEPS Publications

[1] K.-D. Schewe, F. Ferrarotti: Behavioural theory of
reflective algorithms I. Sci. Comput. Program. 223:
102864 (2022)

[2] L. Tong, K. Xu, J. Hu, F.Ferrarotti, K.-D. Schewe:
Exploration of Reflective ASMs for Security. ABZ 2023:
185-192.

[3] D. Dorfmeister, F. Ferrarotti, B. Fischer, E.
Haslinger, R. Ramler, M. Zimmermann: An Approach
for Safe and Secure Software Protection Supported by
Symbolic Execution. IWCFS 2023.

[4] H. Sochor, F. Ferrarotti, D. Kaufmann: Fuzzing-
Based Grammar Inference. MEDI 2022: 72-86

 Consortium:

